Counting Multiderangements by Excedances

نویسندگان

  • CHAK-ON CHOW
  • Rodney Canfield
چکیده

We consider the enumeration of multiderangements of a multiset n = {11 , 22 , . . . ,mm} by the number of excedances. We prove several properties, including the invariance under permutations of {n1, n2, . . . , nm}, the symmetry, recurrence relations, the real-rootedness, and a combinatorial expansion, of the generating function dn(x) of multiderangements by excedances, thus generalizing the corresponding results for the classical derangements. By a further extension, the generating function for multipermutations by numbers of excedances and fixed points is also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Decomposition of Derangements

We give a new decomposition of derangements, which gives a direct interpretation of a formula for their generating function. This decomposition also works for counting derangements by number of excedances.

متن کامل

Central and Local Limit Theorems for Excedances by Conjugacy Class and by Derangement

We give central and local limit theorems for the number of excedances of a uniformly distributed random permutation belonging to certain sequences of conjugacy classes and belonging to the sequence of derangements.

متن کامل

Permutations with extremal number of fixed points

Abstract. We extend Stanley’s work on alternating permutations with extremal number of fixed points in two directions: first, alternating permutations are replaced by permutations with a prescribed descent set; second, instead of simply counting permutations we study their generating polynomials by number of excedances. Several techniques are used: Désarménien’s desarrangement combinatorics, Ge...

متن کامل

Recursions for Excedance Number in Some Permutations Groups

We present recursions for the number of excedances in Coxeter groups of type A and B, as well as in the colored permutation groups Zr ≀ Sn. The proofs use only computations of excedances.

متن کامل

Symmetric unimodal expansions of excedances in colored permutations

We consider several generalizations of the classical γ-positivity of Eulerian polynomials using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for inversions and excedances as well as a similar expansion for derangements. We also prove the γ-positivity for Eulerian polynomials of type B and for Eulerian polynomials of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008